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Abstract—(S,S)-1,2-Bis(boranato(tert-butyl)phosphino)ethane has been synthesized efficiently and in excellent enantioselectivity.
This secondary diphosphine serves as the starting material for an elegant preparation of (R,R)-1,2-bis(boranato(tert-
butyl)methylphosphino)ethane, known as (R,R)-t-Bu-BisP*–borane. © 2002 Elsevier Science Ltd. All rights reserved.

Asymmetric catalysis is one of the most elegant ways
for conferring chiral information to organic products.1

However, although effective control of enantioselectiv-
ity has been demonstrated for a great number of opti-
cally active transition-metal complexes, both
counter-enantiomers of the ligands are not always
available. Yet, biological and physical functions are
generated through precise molecular recognition and
matching of chirality. For instance, (S,S)-1,2-bis(tert-
butylmethylphosphino)ethane, known as (S,S)-t-Bu-
BisP* (1),2 is counted among the most successful
ligands in highly selective asymmetric hydrogenation
reactions,3 while (R,R)-t-Bu-BisP* (2) is required for
the effective introduction of an asymmetric center in
the synthesis of some compounds exhibiting biological
activity (Fig. 1).4

We demonstrated that the synthesis of (S,S)-t-Bu-BisP*
is reasonably easy.2 The key step consists of the enan-
tiodifferentiating deprotonation of one methyl group of
prochiral tert-butyl(dimethyl)phosphine–borane using
s-butyllithium in the presence of (−)-sparteine as the
chiral inductor.5 Unfortunately, the previously reported
syntheses of (+)-sparteine are laborious,6 meaning that
it is practically impossible to produce the counter-enan-
tiomer (R,R)-t-Bu-BisP* using the same methodology.
Alternative routes suffer from both lengthy steps and a
poor overall yield, or inapplicability to a large scale
preparation.7 Therefore, further research was deemed
necessary for practical applications of this important
enantiomer.

Here we wish to report the synthesis of a new C2-sym-
metric, electron-rich, P-chirogenic secondary diphos-
phine–borane 3, which constitutes a valuable synthetic
intermediate for the construction of various diphosphi-
nes, as exemplified by the largely improved synthesis of
(R,R)-t-Bu-BisP*.

The synthetic route to the newly designed secondary
diphosphine–borane 3 is depicted in Scheme 1. Enan-
tiomerically enriched (R)-tert-butyl(hydroxymethyl)-
methylphosphine–borane (4) (91% ee)8 was subjected to
double deprotonation of both alcohol moiety and
methyl group using two molar equivalents of s-BuLi,
followed by copper promoted oxidative coupling reac-
tion,9 and purification by silica gel column chromatog-
raphy to afford the desired diphosphine alcohol 510 in
isolated yield averaging 50%. Interestingly, this cou-
pling was selective to the carbon�carbon bond forma-
tion, without impairment with the oxygen anions. The

Figure 1.
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Scheme 1. Reagents and conditions : (a) (i) s-BuLi, THF,
−78°C, 1 h, then −25°C, 4 h, (ii) CuCl2, 2 h, 50%; (b) (i)
K2S2O8, KOH, H2O, 0°C, then RuCl33H2O, (ii) 5, acetone,
0°C, then rt, 2 h, 83%; (c) (i) n-BuLi, THF, −78°C, 30 min,
(ii) nucleophile, −78°C, 30 min, then rt, 1 h, 46–99% (nucle-
ophiles: MeI, BnCl, ClCH2COOMe, CH2Cl2); (d) (i) s-BuLi,
THF, 0°C, 4 h, (ii) MeI, 0°C to rt, 2 h, 35%.

phine 917 was also successfully synthesized by deproto-
nation (n-BuLi at −78°C) of both acidic hydrogens on
the phosphorus atoms and quenching with CH2Cl2 at
the same temperature.18 Isolated yields of pure (recrys-
tallized) cyclic diphosphine 9 varied from 35 to 53%
depending on the scale and the nature of the elec-
trophile. Further double methylation on the methylene
bridge was performed by treating 9 with more than two
molar equivalents of s-BuLi and excess methyl iodide
to afford compound 10 in 35% yield.19 It is likely that
deprotonation of the two hydrogen atoms and subse-
quent methylations occurred in a two-step mechanism.

The new class of monodentate cyclic diphosphine–
boranes 9 and 10 is especially interesting. Their skele-
ton is attractive because of the rigidity of the
five-membered ring formed and the opposite orienta-
tion of the lone pair of each phosphorus atoms after
deboranation. Cleavage of the P�B bond using HBF4

followed by treatment with saturated aqueous
NaHCO3,20 was effectively performed, affording
monodentate ligands bearing two chelating centers.
When complexed with a suitable transition-metal, they
are expected to be powerful ligands required for the
realization of a high level of enantioselectivity in the
type of asymmetric reactions where only one phosphine
binding is possible.

In summary, a new optically active secondary diphos-
phine–borane has been successfully prepared via a short
synthesis and in reasonable yield. It constitutes a valu-
able synthetic precursor, as exemplified by the prepara-
tion of (R,R)-t-Bu-BisP* and new cyclic monodentate
diphosphines. Not only does this secondary diphos-
phine–borane serves as a simple key starting material,
but also it presents potential catalytic applications on
its own. This research is currently pursued in our
laboratory, and will be communicated in due course.
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pure substrate underwent a ruthenium-catalyzed oxida-
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sium persulfate and potassium hydroxide,8 leading
to (S,S)-1,2-bis(boranato(tert-butyl)phosphino)ethane
(3)11 in high isolated yield (79–85%), and with excellent
optical purity even before recrystallization.12
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phine 3 with two other electrophiles (benzyl bromide
and methyl chloroacetate), producing 715 and 8,16

respectively, in reasonable to good yields (83 and 46%,
respectively). As pictured in Scheme 1, cyclic diphos-
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