

Pergamon Tetrahedron Letters 43 (2002) 7735–7737

A new optically active secondary diphosphine—its use for the improved synthesis of (*R***,***R***)-1,2-bis(boranato(***tert***-butyl)methylphosphino)ethane**

Karen V. L. Crépy and Tsuneo Imamoto*

Department of Chemistry, *Faculty of Science*, *Chiba University*, *Yayoi*-*cho*, *Inage*-*ku*, *Chiba* 263-8522, *Japan*

Received 9 August 2002; revised 26 August 2002; accepted 29 August 2002

Abstract—(*S*,*S*)-1,2-Bis(boranato(*tert*-butyl)phosphino)ethane has been synthesized efficiently and in excellent enantioselectivity. This secondary diphosphine serves as the starting material for an elegant preparation of (*R*,*R*)-1,2-bis(boranato(*tert*butyl)methylphosphino)ethane, known as (*R*,*R*)-*t*-Bu-BisP*–borane. © 2002 Elsevier Science Ltd. All rights reserved.

Asymmetric catalysis is one of the most elegant ways for conferring chiral information to organic products.¹ However, although effective control of enantioselectivity has been demonstrated for a great number of optically active transition-metal complexes, both counter-enantiomers of the ligands are not always available. Yet, biological and physical functions are generated through precise molecular recognition and matching of chirality. For instance, (*S*,*S*)-1,2-bis(*tert*butylmethylphosphino)ethane, known as (*S*,*S*)-*t*-Bu-BisP* (1) ,² is counted among the most successful ligands in highly selective asymmetric hydrogenation reactions,³ while (R, R) -t-Bu-BisP* (2) is required for the effective introduction of an asymmetric center in the synthesis of some compounds exhibiting biological activity (Fig. 1).4

Keywords: alkylation; counter-enantiomer; oxidative coupling; phosphine ligand; *C*₂-symmetric.

We demonstrated that the synthesis of (*S*,*S*)-*t*-Bu-BisP* is reasonably easy.² The key step consists of the enantiodifferentiating deprotonation of one methyl group of prochiral *tert*-butyl(dimethyl)phosphine–borane using *s*-butyllithium in the presence of (−)-sparteine as the chiral inductor.5 Unfortunately, the previously reported syntheses of $(+)$ -sparteine are laborious,⁶ meaning that it is practically impossible to produce the counter-enantiomer (R,R) -*t*-Bu-BisP^{*} using the same methodology. Alternative routes suffer from both lengthy steps and a poor overall yield, or inapplicability to a large scale preparation.7 Therefore, further research was deemed necessary for practical applications of this important enantiomer.

Here we wish to report the synthesis of a new C_2 -symmetric, electron-rich, P-chirogenic secondary diphosphine–borane **3**, which constitutes a valuable synthetic intermediate for the construction of various diphosphines, as exemplified by the largely improved synthesis of $(R,R)-t$ -Bu-BisP^{*}.

The synthetic route to the newly designed secondary diphosphine–borane **3** is depicted in Scheme 1. Enantiomerically enriched (*R*)-*tert*-butyl(hydroxymethyl) methylphosphine–borane (4) $(91\%$ ee)⁸ was subjected to double deprotonation of both alcohol moiety and methyl group using two molar equivalents of *s*-BuLi, followed by copper promoted oxidative coupling reaction,⁹ and purification by silica gel column chromatography to afford the desired diphosphine alcohol **5**¹⁰ in isolated yield averaging 50%. Interestingly, this coupling was selective to the carbon-carbon bond formation, without impairment with the oxygen anions. The

0040-4039/02/\$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)01829-4

^{*} Corresponding author. Tel./fax: +81-43-290-2791; e-mail: imamoto @scichem.s.chiba-u.ac.jp

Scheme 1. *Reagents and conditions*: (a) (i) *s*-BuLi, THF, −78°C, 1 h, then −25°C, 4 h, (ii) CuCl2, 2 h, 50%; (b) (i) $K_2S_2O_8$, KOH, H₂O, 0°C, then RuCl₃3H₂O, (ii) 5, acetone, 0°C, then rt, 2 h, 83%; (c) (i) *n*-BuLi, THF, −78°C, 30 min, (ii) nucleophile, -78° C, 30 min, then rt, 1 h, 46–99% (nucleophiles: MeI, BnCl, ClCH₂COOMe, CH₂Cl₂); (d) (i) *s*-BuLi, THF, 0°C, 4 h, (ii) MeI, 0°C to rt, 2 h, 35%.

pure substrate underwent a ruthenium-catalyzed oxidative one-carbon degradation in the presence of potassium persulfate and potassium hydroxide,⁸ leading to (*S*,*S*)-1,2-bis(boranato(*tert*-butyl)phosphino)ethane (**3**) ¹¹ in high isolated yield (79–85%), and with excellent optical purity even before recrystallization.12

We reasoned that it should be possible to prepare the borane complex of the counter-enantiomer (*R*,*R*)-*t*-Bu-BisP* (2) of (S, S) -t-Bu-BisP* (1) by treating secondary diphosphine–borane **3** with a small excess of *n*-BuLi at −78°C and MeI (Scheme 1). In less than 2 h, the desired (*R*,*R*)-*t*-Bu-BisP*–borane was produced as a virtually pure white solid in quantitative yield. The chiral HPLC of the crude sample indicated it to contain over 98% of (*R*,*R*)-*t*-Bu-BisP*–borane and a minor amount of (*S*,*S*)-*t*-Bu-BisP*–borane. No trace of *meso*-compound was detected by HPLC or NMR analysis,¹³ probably because the oxidative coupling to yield **5** proceeded with enantiomeric enrichment owing to the electronic repulsion of the two alcolates in direct neighborhood in the case of the *meso*-compound. On the other hand, the recrystallized sample was enantiomerically pure (*R*,*R*) *t*-Bu-BisP*–borane, physical properties of which were in all points identical to the (S,\overline{S}) -enantiomer.¹⁴ This new method for the synthesis of (*R*,*R*)-*t*-Bu-BisP* via the new intermediate **3** furnishes an attractive substitution for the other previously reported procedures.7

We further reacted the deprotonated secondary diphosphine **3** with two other electrophiles (benzyl bromide and methyl chloroacetate), producing **7**¹⁵ and **8**, 16 respectively, in reasonable to good yields (83 and 46%, respectively). As pictured in Scheme 1, cyclic diphos-

phine **9**¹⁷ was also successfully synthesized by deprotonation (*n*-BuLi at −78°C) of both acidic hydrogens on the phosphorus atoms and quenching with CH_2Cl_2 at the same temperature.18 Isolated yields of pure (recrystallized) cyclic diphosphine **9** varied from 35 to 53% depending on the scale and the nature of the electrophile. Further double methylation on the methylene bridge was performed by treating **9** with more than two molar equivalents of *s*-BuLi and excess methyl iodide to afford compound **10** in 35% yield.19 It is likely that deprotonation of the two hydrogen atoms and subsequent methylations occurred in a two-step mechanism.

The new class of monodentate cyclic diphosphine– boranes **9** and **10** is especially interesting. Their skeleton is attractive because of the rigidity of the five-membered ring formed and the opposite orientation of the lone pair of each phosphorus atoms after deboranation. Cleavage of the P-B bond using $HBF₄$ followed by treatment with saturated aqueous $NAHCO₃$ ²⁰ was effectively performed, affording monodentate ligands bearing two chelating centers. When complexed with a suitable transition-metal, they are expected to be powerful ligands required for the realization of a high level of enantioselectivity in the type of asymmetric reactions where only one phosphine binding is possible.

In summary, a new optically active secondary diphosphine–borane has been successfully prepared via a short synthesis and in reasonable yield. It constitutes a valuable synthetic precursor, as exemplified by the preparation of (R,R) -*t*-Bu-BisP^{*} and new cyclic monodentate diphosphines. Not only does this secondary diphosphine–borane serves as a simple key starting material, but also it presents potential catalytic applications on its own. This research is currently pursued in our laboratory, and will be communicated in due course.

Acknowledgements

The authors are grateful to the European Commission (European Union Science and Technology Fellowship Programme in Japan, EU S&T FPJ 15) for the fellowship of K.V.L.C. This work was supported by the Grant-in-Aid from the Ministry of Education, Science, Culture and Sports, Japan.

References

- 1. (a) *Catalytic Asymmetric Synthesis*; Ojima, I., Ed.; Wiley-VCH: Weinheim, 1993; (b) Noyori, R. *Asymmetric Catalysis in Organic Synthesis*; Wiley & Sons: New York, 1994; (c) Whitesell, J. K. *Chem*. *Rev*. **1989**, 89, 1581–1590; (d) Bosnich, B. *Asymmetric Catalysis*; Martinus Nijuhoff: Dordrecht, 1986; (e) Ohkuma, T.; Kitamura, M.; Noyori, R. In *Catalytic Asymmetric Synthesis*, 2nd ed.; Ojima, I., Ed.; Wiley-VCH: Weinheim, 2000; Chapter 1.
- 2. Imamoto, T.; Watanabe, J.; Wada, Y.; Masuda, H.; Yamada, H.; Tsuruta, H.; Matsukawa, S.; Yamaguchi, K. *J*. *Am*. *Chem*. *Soc*. **1998**, 120, 1635–1636.
- 3. (a) Yamano, T.; Taya, N.; Kawada, M.; Huang, T.; Imamoto, T. *Tetrahedron Lett*. **1999**, 40, 2577–2580; (b) Gridnev, I. D.; Yamanoi, Y.; Higashi, N.; Tsuruta, H.; Yasutake, M.; Imamoto, T. *Adv*. *Synth*. *Catal*. **2001**, 343, 118–136; (c) Gridnev, I. D.; Higashi, N.; Imamoto, T. *J*. *Am*. *Chem*. *Soc*. **2001**, 123, 4631–4632; (d) Gridnev, I. D.; Yasutake, M.; Higashi, N.; Imamoto, T. *J*. *Am*. *Chem*. *Soc*. **2001**, 123, 5268–5276; (e) Yasutake, M.; Gridnev, I. D.; Higashi, N.; Imamoto, T. *Org*. *Lett*. **2001**, 3, 1701– 1704.
- 4. Gridnev, I. D.; Yasutake, M.; Higashi, N.; Imamoto, T. *J*. *Am*. *Chem*. *Soc*. **2001**, 123, 5268–5276.
- 5. Muci, A. R.; Campos, K. R.; Evans, D. A. *J*. *Am*. *Chem*. *Soc*. **1995**, 117, 9075–9076.
- 6. (+)-Sparteine is best prepared by resolution of *rac*sparteine, obtained from *rac*-lupanine or by synthesis using (−)-10-camphorsulfonic acid. See: Hoppe, D. In *Encyclopedia of Reagents for Organic Synthesis*; Paquette, L. A., Ed.; Wiley: New York, 1995; Vol. 7, pp. 4662–4664 and references cited therein.
- 7. (a) Miura, T.; Yamada, H.; Kikuchi, S.; Imamoto, T. *J*. *Org*. *Chem*. **2000**, 65, 1877–1880; (b) Imamoto, T.; Kikuchi, S.; Miura, T.; Wada, Y. *Org*. *Lett*. **2001**, 3, 87–90.
- 8. Nagata, K.; Matsukawa, S.; Imamoto, T. *J*. *Org*. *Chem*. **2000**, 65, 4185–4188.
- 9. Maryanoff, C. A.; Maryanoff, B. E.; Tang, R.; Mislow, K. *J*. *Am*. *Chem*. *Soc*. **1973**, 95, 5839–5840.
- 10. (*S*,*S*) 1,2 Bis(boranato((*tert* butyl)hydroxymethyl)phosphino)ethane (**5**): White crystals, mp 136–138°C (EtOAc/ hexane 2:7); R_f 0.46 (2:5 EtOAc/hexane); $[\alpha]_D^{27} = +3.6$ (*c* 0.97, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 0.47 (br. q, J_{HB} 95.9 Hz, 6 H), 1.21–1.25 (d, ³ J_{HP} 13.8 Hz, 18 H), 1.95–2.05 (m, 4 H), 2.29 (br. s, 2 H), 4.09 (s, 4 H); 13C NMR (100 MHz, CDCl₃): δ 11.1 (d, *J*_{CP} 28.7 Hz), 25.8, 28.3 (d, *J*_{CP} 31.2 Hz), 55.9 (d, *J*_{CP} 35.3 Hz); IR (KBr): 3480 (br), 2985, 2365, 1465, 1190, 1070, 1050 cm⁻¹; FAB MS (rel. int.): 293 (M⁺, 85%), 289 (100), 279 (M⁺-BH₃, 60), 223 (M⁺ −BH3−*t*-Bu+H, 13), 154, 136, 57 (*t*-Bu, 90). Anal. calcd for $C_{12}H_{34}B_2O_2P_2$: C, 49.03; H, 11.66. Found: C, 49.16; H, 11.78%.
- 11. (*S*,*S*)-1,2-Bis(boranato(*tert*-butyl)phosphino)ethane (**3**): White fluffy needles, mp 96–98°C (EtOAc/hexane 1:10); R_f 0.37 (2:5 EtOAc/hexane); $[\alpha]_{D}^{27} = -82.8$ (*c* 0.97, CHCl₃);
¹H NMR (400 MHz, CDCL); δ 0.61 (br, *g*, *I* = 92.9 Hz H NMR (400 MHz, CDCl₃): δ 0.61 (br. q, J_{HB} 92.9 Hz, 6 H), 1.25 (d, ³J_{HP} 14.7 Hz, 18 H), 1.88-1.99 (m, 2 H), 2.09–2.15 (m, 2 H), 4.40 (d, J_{HP} 352.8 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃): δ 12.2 (d, *J*_{CP} 30.3 Hz), 26.7, 27.1 (d, *J*_{CP} 34.5 Hz); IR (KBr): 2990, 2885, 1460, 1200, 1060 cm⁻¹; FAB MS (rel. int.): 233 (M⁺, 75%), 231 (79), 219 (M⁺ −BH3, 100), 207, 161, 136, 105, 57 (*t*-Bu, 67). Anal. calcd for $C_{10}H_{30}B_2P_2$: C, 51.35; H, 12.93. Found: C, 51.68; H, 13.08%.
- 12. HPLC analysis of crude (*R*,*R*)-*t*-Bu-BisP* (**2**) synthesized from **3** before recrystallization revealed 98% ee.
- 13. The regions corresponding to the methylene groups, ranging from 1.84 to 2.30 ppm (1 H NMR) or between 4.46 and 16.10 ppm $(^{13}C \text{ NMR})$, are significantly different for the borane complexes of (*S*,*S*)-BisP* and *meso*-BisP*.
- 14. (*R*,*R*) 1,2 Bis(boranato(*tert* butyl)methylphosphino) ethane (**6**): White crystals, mp 168–170°C (EtOAc/hexane

2:5); R_f 0.23 (2:5 EtOAc/hexane); $[\alpha]_D^{28} = +8.8$ (*c* 0.99, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 0.42 (br. q, J_{HB} 88.7 Hz, 6 H), 1.18 (d, ³J_{HP} 13.8 Hz, 18 H), 1.22 (d, ²J_{HP} 9.4 Hz, 6 H), 1.57–1.66 (m, 2 H), 1.97–2.05 (m, 2 H); 13C NMR (100 MHz, CDCl₃): δ 5.6 (d, *J*_{CP} 35.3 Hz), 15.9 (d, *J*_{CP} 30.3 Hz), 25.1, 27.1 (d, *J*_{CP} 33.6 Hz); IR (KBr): 2960, 2390, 2345, 1190, 1065 cm−¹ ; FAB MS (rel. int.): 261 (M⁺, 89%), 259 (98), 247 (M⁺-BH₃, 100), 235 (45), 189 (45), 154 (67), 57 (*t*-Bu, 34). Anal. calcd for $C_{12}H_{34}B_2P_2$: C, 55.02; H, 13.08. Found: C, 55.05; H, 13.15%. ee >99% (Daicel Chiracel OD-H, 0.5 mL/min, 25°C, 10% 2 propanol/hexane, (R, R) $t_1 = 10.2$ min (S, S) $t_2 = 14.2$ min). As expected, opposite sign of the $[\alpha]_D$ of $(S, S)-t$ -Bu-BisP* was observed.

- 15. (*R*,*R*) 1,2 Bis(boranato(*tert* butyl)benzylphosphino) ethane (**7**): White needles, mp 142–143°C (EtOAc/hexane 1:9); R_f 0.53 (2:5 EtOAc/hexane); $[\alpha]_D^{22} = -31.7$ (*c* 0.80, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 0.42 (br. q, J_{HB} 53.1 Hz, 6 H), 1.08 (d, ³J_{HP} 13.5 Hz, 18 H), 1.67–1.75 (m, 2 H), 2.78–2.95 (m, 4 H), 7.19–7.32 (m, 2 H); 13C NMR $(100 \text{ MHz}, \text{CDCl}_3)$: δ 14 (d, J_{CP} 29.5 Hz), 25.4, 28.7 (d, *J*_{CP} 27.1 Hz), 29 (d, *J*_{CP} 31.1 Hz), 127.1, 128.5, 130.1, 132.9; IR (KBr): 3040, 2980, 2360, 1500, 1460, 1370, 1060 cm⁻¹. HRMS (FAB) calcd for $C_{24}H_{42}B_2P_2$: 414.16. Found: 414.2952.
- 16. (*R*,*R*) 1,2 Bis(boranato(*tert* butyl)(methylacetate)phosphino)ethane (**8**): White solid, mp 116–118°C (EtOAc/ hexane 1:9); R_f 0.14 (2:5 EtOAc/hexane); $[\alpha]_D^{23} = +30.5$ (*c* 0.69, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 0.40 (br. q, *J*HB 78.8 Hz, 6 H), 1.20–1.26 (m, 18 H), 1.99–2.08 (m, 2 H), 2.23–2.32 (m, 2 H), 2.78–2.79 (m, 4 H), 3.75 (s, 6 H); ¹³C NMR (100 MHz, CDCl₃): δ 14.1 (d, J_{CP} 28.7 Hz), 25.4, 27.7 (d, *J*_{CP} 21.3 Hz), 29.2 (d, *J*_{CP} 31.1 Hz), 52.5, 168.4–168.5 (m); IR (KBr): 2980, 2400, 1740, 1470, 1430, 1280, 1200, 1120 cm−¹ . HRMS (FAB) calcd for $C_{16}H_{38}B_2P_2O_4$: 378.05. Found: 378.2271.
- 17. Compound **9**: White solid, mp 153–155°C (EtOAc/hexane 1:8); R_f 0.60 (2:5 EtOAc/hexane); $[\alpha]_D^{22} = -0.8$ (*c* 1.02, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 0.50 (br. q, J_{HB} 87 Hz, 6 H), 1.25 (d, ³J_{HP} 14.7 Hz, 18 H), 1.82–1.87 (m, 2 H), 2.04–2.19 (m, 2 H), 2.28–2.32 (m, 2 H); 13C NMR $(100 \text{ MHz}, \text{CDCl}_3)$: δ 10.71 (m), 18.68 (d, J_{CP} 32.8 Hz), 25.51, 28.35 (d, *J*_{CP} 28.7 Hz); IR (KBr): 2980, 2840, 2380, 1460, 1370, 1200, 1060 cm⁻¹. Anal. calcd for C₁₁H₃₀B₂P₂: C, 53.72; H, 12.30. Found: C, 53.71; H, 12.29%.
- 18. Compound **10**: White solid, mp 155–158°C (EtOAc/hexane 1:8); R_f 0.58 (2:5 EtOAc/hexane); $[\alpha]_D^{22} = -9.2$ (*c* 1.06, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 0.50 (br. q, J_{HB} 90 Hz, 6 H), 1.35 (d, ³J_{HP} 14.3 Hz, 18 H), 1.72–1.81 (m, 6 H), 1.98–2.15 (m, 2 H), 2.32–2.38 (m, 2 H); 13C NMR $(100 \text{ MHz}, \text{ CDCl}_3): \delta$ 16.93 (d, J_{CP} 35.3 Hz), 27.00, 27.46, 32.45 (d, *J*_{CP} 22.2 Hz), 32.49 (d, *J*_{CP} 22.2 Hz), 32.82–33.04 (m); IR (KBr): 2980, 2490, 2260, 1470, 1300, 1060 cm−¹ . Anal. calcd for C13H34B2P2: C, 56.99; H, 12.51%. Found: C, 57.17; H, 12.67%. HRMS (FAB) calcd for $C_{13}H_{34}B_2P_2K$: 313.08. Found: 313.1965.
- 19. Dichloromethane gave a cleaner reaction than dibromomethane.
- 20. (a) McKinstry, L.; Livinghouse, T. *Tetrahedron Lett*. **1994**, 35, 9319–9322; (b) McKinstry, L.; Livinghouse, T. *Tetrahedron* **1994**, 50, 6145–6154.